Covering problems with polyellipsoids: A location analysis perspective
Blanco, Victor; Puerto, Justo
Publicación: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
2021
VL / 289 - BP / 44 - EP / 58
abstract
In this paper we analyze the extension of the classical smallest enclosing disk problem to the case of the location of a polyellipsoid to fully cover a set of demand points in R-d. We prove that the problem is polynomially solvable in fixed dimension and analyze mathematical programming formulations for it. We also consider some geometric approaches for the problem in case the foci of the polyellipsoids are known. Extensions of the classical algorithm by Elzinga-Hearn are also derived for this new problem. Moreover, we address two extensions of the problem, as the case where the foci of the enclosing polyellipsoid are not given and have to be determined among a potential set of points or the induced covering problems when instead of polyellipsoids, one uses ordered median polyellipsoids. For these problems we also present Mixed Integer (Non) Linear Programming strategies that lead to efficient ways to solve it. Extensive computational experiments on different datasets show the usefulness of our solution methods. (C) 2020 Elsevier B.V. All rights reserved.
MENTIONS DATA
Economics & Business
-
6 Twitter
-
0 Wikipedia
-
0 News
-
0 Policy
Publicaciones similares en Economics & Business