Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center

Hees, A.; Do, T.; Ghez, A. M.; Martinez, G. D.; Naoz, S.; Becklin, E. E.; Boehle, A.; Chappell, S.; Chu, D.; Dehghanfar, A.; Kosmo, K.; Lu, J. R.; Matthews, K.; Morris, M. R.; Sakai, S.; Schodel, R.; Witzel, G.

VL / 118 - BP / - EP /
We demonstrate that short-period stars orbiting around the supermassive black hole in our Galactic center can successfully be used to probe the gravitational theory in a strong regime. We use 19 years of observations of the two best measured short-period stars orbiting our Galactic center to constrain a hypothetical fifth force that arises in various scenarios motivated by the development of a unification theory or in some models of dark matter and dark energy. No deviation from general relativity is reported and the fifth force strength is restricted to an upper 95% confidence limit of vertical bar alpha vertical bar < 0.016 at a length scale of lambda = 150 astronomical units. We also derive a 95% confidence upper limit on a linear drift of the argument of periastron of the short-period star S0-2 of vertical bar(omega) over dot(S0-2)vertical bar < 1.6 x 10(-3) rad/yr, which can be used to constrain various gravitational and astrophysical theories. This analysis provides the first fully self-consistent test of the gravitational theory using orbital dynamic in a strong gravitational regime, that of a supermassive black hole. A sensitivity analysis for future measurements is also presented.
135 InfluRatio

Access level

Green accepted, Bronze