Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q(pool)

Calvo, Enrique; Cogliati, Sara; Hernansanz-Agustin, Pablo; Loureiro-Lopez, Marta; Guaras, Adela; Casuso, Rafael A.; Garcia-Marques, Fernando; Acin-Perez, Rebeca; Marti-Mateos, Yolanda; Silla-Castro, J. C.; Carro-Alvarellos, Marta; Huertas, Jesus R.; Vazque

Publicación: SCIENCE ADVANCES
2020
VL / 6 - BP / - EP /
abstract
Mitochondrial respiratory complexes assemble into supercomplexes (SC). Q-respirasome (III2 + IV) requires the supercomplex assembly factor (SCAF1) protein. The role of this factor in the N-respirasome (I + III2 + IV) and the physiological role of SCs are controversial. Here, we study C57BL/6J mice harboring nonfunctional SCAF1, the full knockout for SCAF1, or the wild-type version of the protein and found that exercise performance is SCAF1 dependent. By combining quantitative data-independent proteomics, 2D Blue native gel electrophoresis, and functional analysis of enriched respirasome fractions, we show that SCAF1 confers structural attachment between III2 and IV within the N-respirasome, increases NADH-dependent respiration, and reduces reactive oxygen species (ROS). Furthermore, the expression of AOX in cells and mice confirms that CI-CIII superassembly segments the CoQ in two pools and modulates CI-NADH oxidative capacity.

Access level

Gold, Green published