The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks

Tobin, John J.; Sheehan, Patrick D.; Megeath, S. Thomas; Karla Diaz-Rodriguez, Ana; Offner, Stella S. R.; Murillo, Nadia M.; Van't Hoff, Merel L. R.; van Dishoeck, Ewine F.; Osorio, Mayra; Anglada, Guillem; Furlan, Elise; Stutz, Amelia M.; Reynolds, Nickal

Publicación: ASTROPHYSICAL JOURNAL
2020
VL / 890 - BP / - EP /
abstract
We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/submillimeter Array at 0.87 mm at a resolution of similar to 0.'' 1 (40 au), including observations with the Very Large Array at 9.mm toward 148 protostars at a resolution of similar to 0.'' 08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9.mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are 44.9(-3.4)(+5.8), 37.0(-3.0)(+4.9), and 28.5(-2.3)(+3.7) au, respectively, and the mean protostellar dust disk masses are 25.9(-4.0)(+7.7), 14.9(-2.2)(+3.8), 11.6(-1.9)(+3.5) M-circle plus, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.

Access level

Green accepted, Green submitted, Bronze, Green published